Функция и ее график и свойства и противопоказания
Определение : Числовой функцией называется соответствие, которое каждому числу х из некоторого заданного множества сопоставляет единственное число y.
Обозначение:
y = f(x),
где x – независимая переменная (аргумент), y – зависимая переменная (функция). Множество значений x называется областью определения функции (обозначается D(f)). Множество значений y называется областью значений функции (обозначается E(f)). Графиком функции называется множество точек плоскости с координатами (x, f(x))
Способы задания функции.
- аналитический способ (с помощью математической формулы);
- табличный способ (с помощью таблицы);
- описательный способ (с помощью словесного описания);
- графический способ (с помощью графика).
Основные свойства функции.
1. Четность и нечетность
Функция называется четной, если
– область определения функции симметрична относительно нуля
– для любого х из области определения f(-x) = f(x)
График четной функции симметричен относительно оси 0y
Функция называется нечетной, если
– область определения функции симметрична относительно нуля
– для любого х из области определения f(-x) = –f(x)
График нечетной функции симметричен относительно начала координат.
2.Периодичность
Функция f(x) называется периодической с периодом , если для любого х из области определения f(x) = f(x+Т) = f(x-Т).
График периодической функции состоит из неограниченно повторяющихся одинаковых фрагментов.
3. Монотонность (возрастание, убывание)
Функция f(x) возрастает на множестве Р , если для любых x1 и x2 из этого множества, таких, что x12 выполнено неравенство f(x1)2).
Функция f(x) убывает на множестве Р , если для любых x1 и x2 из этого множества, таких, что x12 выполнено неравенство f(x1) > f(x2).
4. Экстремумы
Точка Хmax называется точкой максимума функции f(x) , если для всех х из некоторой окрестности Хmax , выполнено неравенство f(х) f(Xmax).
Значение Ymax=f(Xmax) называется максимумом этой функции.
Хmax – точка максимума
Уmax – максимум
Точка Хmin называется точкой минимума функции f(x) , если для всех х из некоторой окрестности Хmin , выполнено неравенство f(х) f(Xmin).
Значение Ymin=f(Xmin) называется минимумом этой функции.
Xmin – точка минимума
Ymin – минимум
Xmin, Хmax – точки экстремума
Ymin, Уmax – экстремумы.
5. Нули функции
Нулем функции y = f(x) называется такое значение аргумента х , при котором функция обращается в нуль: f(x) = 0.
Х1,Х2,Х3 – нули функции y = f(x).
Задачи и тесты по теме “Основные свойства функции”
Рекомендации к теме
Изучив эту тему, Вы должны уметь находить область определения различных функций, определять с помощью графиков промежутки монотонности функции, исследовать функции на четность и нечетность. Рассмотрим решение подобных задач на следующих примерах.
Примеры.
1. Найти область определения функции.
a)
Решение: область определения функции находится из условия
Ответ:
б)
Решение: область определения функции находится из условий
Ответ:
2. Исследовать на четность и нечетность функцию:
a)
Решение:
1) |
– симметрична относительно нуля.
2) |
следовательно, функция f(x) – четная.
Ответ: четная.
в)
1)
D(f) = [-1; 1] – симметрична относительно нуля.
2) |
следовательно, функция не является ни четной, ни нечетной.
Ответ: ни четная, ни не четная.
Источник
Всё о функциях и их свойствах
( в помощь учителю математики)
Разработчик: учитель математики и физики
МОУ «СОШ а. Псаучье-Дахе имени
Героя России О. М. Карданова»
Мекерова Фатима Магометовна
Функции и их свойства
Функция — одно из важнейших математических понятий. Функцией называют такую зависимость переменной у от переменной х, при которой каждому значению переменной х соответствует единственное значение переменной у.
Переменную х называют независимой переменной или аргументом. Переменную у называют зависимой переменной. Говорят также, что переменная у является функцией от переменной х. Значения зависимой переменной называют значениями функции.
Если зависимость переменной у от переменной х является функцией, то коротко это записывают так: y=f(x). (Читают: у равно f от х.) Символом f(x) обозначают значение функции, соответствующее значению аргумента, равному х.
Все значения независимой переменной образуют область определения функции. Все значения, которые принимает зависимая переменная, образуют область значений функции.
Если функция задана формулой и ее область определения не указана, то считают, что область определения функции состоит из всех значений аргумента, при которых формула имеет смысл.
Способы задания функции:
1. аналитический способ (функция задается с помощью математической формулы;
2. табличный способ (функция задается с помощью таблицы)
3. описательный способ (функция задается словесным описанием)
4. графический способ (функция задается с помощью графика).
Графиком функции называют множество всех точек координатной плоскости, абсциссы которых равны значениям аргумента, а ординаты — соответствующим значениям функции.
ОСНОВНЫЕ СВОЙСТВА ФУНКЦИЙ
1. Нули функции
Нуль функции – такое значение аргумента, при котором значение функции равно нулю .
2. Промежутки знакопостоянства функции
Промежутки знакопостоянства функции – такие множества значений аргумента, на которых значения функции только положительны или только отрицательны.
3. Возрастание (убывание) функции.
Возрастающая в некотором промежутке функция – функция, у которой большему значению аргумента из этого промежутка соответствует большее значение функции.
Функция у = f (x) называется возрастающей на интервале (а; b), если для любых x1 и x2 из этого интервала таких, что x12 , справедливо неравенство f(x1)2).
Убывающая в некотором промежутке функция – функция, у которой большему значению аргумента из этого промежутка соответствует меньшее значение функции.
Функция у =f (x) называется убывающей на интервале (а; b), если для любых x1 и x2 из этого интервала таких, что x12, справедливо неравенство f(x1)>f(x2).
4. Четность (нечетность) функции
Четная функция – функция, у которой область определения симметрична относительно начала координат и для любого х из области определения выполняется равенство f(-x) = f(x). График четной функции симметричен относительно оси ординат.
Например, у = х2 – четная функция.
Нечетная функция – функция, у которой область определения симметрична относительно начала координат и для любого х из области определения справедливо равенство f(-x) = – f(x). График нечетной функции симметричен относительно начала координат.
Например: у = х3 – нечетная функция.
Функция общего вида не является четной или нечетной (у = х2+х).
Свойства некоторых функций и их графики
1. Линейной функцией называется функция вида , где k и b – числа.
Область определения линейной функции – множество R действительных чисел.
Графиком линейной функции у = kx + b (k ≠ 0) является прямая проходящая через точку (0; b) и параллельная прямой у = kx.
Прямая, не параллельная оси Оу, является графиком линейной функции.
Свойства линейной функции.
1. При k > 0 функция у = kx + b возрастающая в области определения.
2. При k 0 функция у = kx + b убывающая в области определения.
3. Множеством значений функции y = kx + b(k ≠ 0) является вся числовая прямая, т.е. множество R действительных чисел.
При k = 0 множество значений функции у = kx + b состоит из одного числа b.
3. При b = 0 и k = 0 функция не является ни четной, ни нечетной.
При k = 0 линейная функция имеет вид у = b и при b ≠ 0 она является четной.
При k = 0 и b = 0 линейная функция имеет вид у = 0 и являете одновременно четной и нечетной.
Графиком линейной функции у = b является прямая, проходящая через точку (0; b) и параллельная оси Ох. Заметим, что при b = 0 график функции у = b совпадаете осью Ох.
5. При k > 0 имеем, что у > 0, если и у 0, если . При k 0 имеем, что у > 0, если и у
2. Функция y = x2
Область определения этой функции – множество R действительных чисел.
Придавая переменной х несколько значений из области определения функции и вычисляя соответствующие значения у по формуле y = x2 , изображаем график функции.
График функции y = x2 называется параболой.
Свойства функции у = х2.
1. Если х = 0, то у = 0, т.е. парабола имеет с осями координат общую точку (0; 0) – начало координат.
2. Если х ≠ 0, то у > 0, т.е. все точки параболы, кроме начала координат, лежат над осью абсцисс.
3. Множеством значений функции у = х2 является промежуток [0; + ∞).
4. Если значения аргумента отличаются только знаком, то значения функции равны, т.е. парабола симметрична относительно оси ординат (функция у = х2 – четная).
5. На промежутке [0; + ∞) функция у = х2 возрастает.
6. На промежутке (-∞; 0] функция у = х2 убывает.
7. Наименьшее значение функция принимает в точке х = 0, оно равно 0. Наибольшего значения не существует.
3.Фунуция
Область определения этой функции – промежуток [0;+∞), т. е. все неотрицательные числа.
Придавая переменной х несколько значений из области определения функции и вычисляя соответствующие значения у по формуле , изображаем график функции.
Свойства функции.
1. Если х = 0, то у = 0, т.е. график функции имеет с осями координат общую точку (0; 0) – начало координат.
2. Если х > 0, то у > 0, т.е. все точки графика функции, кроме начала координат, лежат над осью абсцисс.
3. Множеством значений функции является промежуток [0;+∞).
4. Функция не является ни четной, ни нечетной.
5. Функция возрастающая в области определения.
6. Наименьшее значение функция принимает в точке х = 0, оно равно 0. Наибольшего значения не существует.
4. Функция y = x3
Область определения этой функции – множество R действительных чисел,
Придавая переменной х несколько значений из области определения функции и вычисляя соответствующие значения у по формуле у = х3, изображаем график функции.
График функции у= х3 называется кубической параболой.
Свойства функции y = x3.
1. Если х = 0, то у = 0, т.е. кубическая парабола пересекает оси координат в точке (0; 0) – начале координат.
2. Если х > 0, то у > 0, а если х 0, то у
3. Множеством значений функции у = х3 является вся числовая прямая.
4. Если значения аргумента отличаются только знаком, то и значения функции отличаются только знаком, т.е. кубическая парабола симметрична относительно начала координат (функция у = х3 – нечетная).
4. Функция у = х3 возрастающая в области определения.
5. Функция y = |x|
Область определения этой функции – множество R действительных чисел.
Пользуясь определением модуля числа х при х > О получим у = х, а при х у = – х. Таким образом, имеем:
График функции состоит из двух частей: части прямой у = х при х ≥ 0 и из части прямой у =- х при х
Свойства функции
1. Если х = 0, то у = 0, т.е. график пересекает оси координат в точке (0; 0) – начале координат.
2. Если х ≠ 0, то у > 0, т.е. все точки графика функции y = |x|, кроме начала координат, лежат над осью абсцисс.
3. Множеством значений функции y = |x| является промежуток [0;+∞).
4. Если значения аргумента отличаются только знаком, то значения функции равны, т.е. график функции симметричен относительно ординат (функция y = |x| – четная).
5. На промежутке [0;+∞) функция y = |x| возрастает.
6. На промежутке (-∞;0] функция y = |x| убывает.
7. Наименьшее значение функция принимает в точке х, оно равно 0. Наибольшего значения не существует.
6. Функция
Область определения функции: .
Область значений функции: .
График — гипербола.
1. Нули функции.
у ≠ 0, нулей нет.
2. Промежутки знакопостоянства,
Если k > 0, то у > 0 при х > 0; у х
Если k у х > 0; у > 0 при х
3. Промежутки возрастания и убывания.
Если k > 0, то функция убывает при .
Если k
4. Четность (нечетность) функции.
Функция нечетная.
Квадратный трехчлен
Уравнение вида ax2+bx+c = 0, где a, b и с — некоторые числа, причем а≠0, называется квадратным.
В квадратном уравнении ax2+bx+c = 0 коэффициент а называется первым коэффициентом, b — вторым коэффициентам, с — свободным членом.
Формула корней квадратного уравнения имеет вид:
.
Выражение называется дискриминантом квадратного уравнения и обозначается через D.
Если D = 0, то существует только одно число, удовлетворяющее уравнению ax2+bx+c = 0. Однако условились говорить, что в этом случае квадратное уравнение имеет два равных действительных корня, а само число называют двукратным корнем.
Если D
Если D > 0, то квадратное уравнение имеет два различных действительных корня.
Пусть дано квадратное уравнение ax2+bx+c = 0. Так как а≠0, то, разделив обе части данного уравнения на а, получим уравнение . Полагая и , приходим к уравнению , в котором первый коэффициент равен 1. Такое уравнение называется приведенным.
Формула корней приведенного квадратного уравнения имеет вид:
.
Уравнения вида
аx2 +bx = 0, ax2 + с =0, аx2 = 0
называются неполными квадратными уравнениями. Неполные квадратные уравнения решаются разложением левой части уравнения на множители.
Теорема Виета.
Сумма корней квадратного уравнения равна взятому с противоположным знаком отношению второго коэффициента к первому, а произведение корней — отношению свободного члена к первому коэффициенту, т.е.
; .
Обратная теорема.
Если сумма каких-нибудь двух чисел х1 и х2 равна , а их произведение равно , то эти числа являются корнями квадратного уравнения ах2 + bх + с = 0.
Функция вида ах2 +bх + с называется квадратным трехчленом. Корни этой функции являются корнями соответствующего квадратного уравнения ах2 + bх + с = 0.
Если дискриминант квадратного трехчлена больше нуля, то этот трехчлен можно представить в виде:
ах2 +bх + с =а(х-х1)(х-х2)
где х1 и х2 — корни трехчлена
Если дискриминант квадратного трехчлена равен нулю, то этот трехчлен можно представить в виде:
ах2 +bх + с =а(х-х1)2
где х1 — корень трехчлена.
Например, 3х2 – 12х + 12 = 3(х – 2)2.
Уравнение вида ах4 + bх2 + с = 0 называется биквадратным. С помощью замены переменной по формуле х2 = y оно приводится к квадратному уравнению аy2 + by + с = 0.
Квадратичная функция
Квадратичной функцией называется функция, которую можно записать формулой вида y = ax2 + bx + c, где x – независимая переменная, a, b и c – некоторые числа, причем a≠0.
Свойства функции и вид ее графика определяются, в основном, значениями коэффициента a и дискриминанта .
Свойства квадратичной функции
– Область определения: R;
– Область значений:
при а > 0 [-D/(4a); ∞)
при а (-∞; -D/(4a)];
– Четность, нечетность:
при b= 0 функция четная
при b≠0 функция не является ни четной, ни нечетной
– Нули:
при D > 0 два нуля: ,
при D = 0 один нуль:
при D
– Промежутки знакопостоянства:
если, а > 0, D > 0, то
если, а > 0, D = 0, то
eсли а > 0, D
если а 0, то
если а
если а
– Промежутки монотонности
при а > 0
при а
Графиком квадратичной функции является парабола – кривая, симметричная относительно прямой , проходящей через вершину параболы (вершиной параболы называется точка пересечения параболы с осью симметрии).
Чтобы построить график квадратичной функции, нужно:
1) найти координаты вершины параболы и отметить ее в координатной плоскости;
2) построить еще несколько точек, принадлежащих параболе;
3) соединить отмеченные точки плавной линией.
Координаты вершины параболы определяются по формулам:
; .
Преобразование графиков функции
1. Растяжение графика у = х2 вдоль оси у в |а| раз (при |а| 1 — это сжатие в 1/|а| раз).
Если, а х (ветви параболы будут направлены вниз).
Результат: график функции у = ах2.
2. Параллельный перенос графика функции у = ах2 вдоль оси х на |m| (вправо при
m > 0 и влево при т 0).
Результат: график функции у = а(х – т)2.
3. Параллельный перенос графика функции вдоль оси у на |n| (вверх при п > 0 и вниз при п 0).
Результат: график функции у = а(х – т)2 + п.
Квадратичные неравенства
Неравенства вида ах2 + bх + с > 0 и ах2 + bх + с 0, где х — переменная, a, b и с — некоторые числа, причем, а≠0, называют неравенствами второй степени с одной переменной.
Решение неравенства второй степени с одной переменной можно рассматривать как нахождение промежутков, в которых соответствующая квадратичная функция принимает положительные или отрицательные значения.
Для решения неравенств вида ах2 + bх + с > 0 и ах2 + bх + с 0 поступают следующим образом:
1) находят дискриминант квадратного трехчлена и выясняют, имеет ли трехчлен корни;
2) если трехчлен имеет корни, то отмечают их на оси х и через отмеченные точки проводят схематически параболу, ветви которой направлены вверх при а > 0 или вниз при а 0; если трехчлен не имеет корней, то схематически изображают параболу, расположенную в верхней полуплоскости при а > 0 или в нижней при а
3) находят на оси х промежутки, для которых точки параболы расположены выше оси х (если решают неравенство ах2 + bх + с > 0) или ниже оси х (если решают неравенство ах2 + bх + с
Пример:
Решим неравенство .
Рассмотрим функцию
Ее графиком является парабола, ветви которой направлены вниз (т. к. ).
Выясним, как расположен график относительно оси х. Решим для этого уравнение . Получим, что х = 4. Уравнение имеет единственный корень. Значит, парабола касается оси х.
Изобразив схематически параболу, найдем, что функция принимает отрицательные значения при любом х, кроме 4.
Ответ можно записать так: х — любое число, не равное 4.
Решение неравенств методом интервалов
схема решения
1. Найти нули функции, стоящей в левой части неравенства.
2. Отметить положение нулей на числовой оси и определить их кратность (если ki четное, то нуль четной кратности, если ki нечетное — то нечетной).
3. Найти знаки функции в промежутках между ее нулями, начиная с крайнего правого промежутка: в этом промежутке функция в левой части неравенства всегда положительна для приведенного вида неравенств. При переходе справа налево через нуль функции от одного промежутка к соседнему следует учитывать:
• если нуль нечетной кратности, знак функции изменяется,
• если нуль четной кратности, знак функции сохраняется.
4. Записать ответ.
Пример:
(х + 6) (х + 1) (х – 4)
Найден нули функции. Они равны: х1 = -6; х2 = -1; х3 = 4.
Отметим на координатной прямой нули функции f(x) = (х + 6) (х + 1) (х – 4).
Найдем знаки этой функции в каждом из промежутков (-∞; -6), (-6; -1), (-1; 4) и
(4; +∞).
Из рисунка видно, что множеством решений неравенства является объединение промежутков (-∞; -6) и (-1; 4).
Ответ: (-∞; -6) и (-1; 4).
Рассмотренный способ решения неравенств называют методом интервалов.
Источник
Изучение свойств функций и их графиков занимает значительное место как в школьной математике, так и в последующих курсах. Причем не только в курсах математического и функционального анализа, и даже не только в других разделах высшей математики, но и в большинстве узко профессиональных предметов. Например, в экономике – функции полезности, издержек, функции спроса, предложения и потребления…, в радиотехнике – функции управления и функции отклика, в статистике – функции распределения… Чтобы облегчить дальнейшее изучение специальных функций, нужно научиться свободно оперировать графиками элементарных функций. Для этого после изучения следующей таблицы рекомендую пройти по ссылке “Преобразования графиков функций”. и/или по ссылке Построение графиков, содержащих модуль аргумента или модуль функции, а также сумму или разность нескольких модулей.
Внимание: в течение учебного года доступ к интерактивным упражнениям (по кнопке “К движению”) ограничен. За месяц перед экзаменом кнопка будет открыта для общего пользования без регистрации. Чтобы получить доступ к “живым” графикам раньше, нужно быть моим учеником или присоединиться к спонсорам сайта.
Название функции | Формула функции | График функции | Название графика | Комментарий |
---|---|---|---|---|
Линейная | y = kx | Прямая | Cамый простой частный случай линейной зависимости – прямая пропорциональность у = kx, где k ≠ 0 – коэффициент пропорциональности. На рисунке пример для k = 1, т.е. фактически приведенный график иллюстрирует функциональную зависимость, которая задаёт равенство значения функции значению аргумента. | |
Линейная | y = kx + b | Прямая | Общий случай линейной зависимости: коэффициенты k и b – любые действительные числа. Здесь k = 0.5, b = -1. Подробнее.
К движению. | |
Квадратичная | y = x2 | Парабола | Простейший случай квадратичной зависимости – симметричная парабола с вершиной в начале координат. Демо упражнения.
Видео на YouTube | |
Квадратичная | y = ax2 + bx + c | Парабола | Общий случай квадратичной зависимости: коэффициент a – произвольное действительное число не равное нулю (a принадлежит R, a ≠ 0), b, c – любые действительные числа. Подробнее.
К движению. | |
Степенная | y = x3 | Кубическая парабола | Самый простой случай для целой нечетной степени. Случаи с коэффициентами изучаются в разделе “Движение графиков функций”. К движению. | |
Степенная | y = x1/2 | График функции y = √x | Самый простой случай для дробной степени (x1/2 = √x). Случаи с коэффициентами изучаются в разделе “Движение графиков функций”. К движению √x. К движению 3√x. | |
Степенная | y = k/x | Гипербола | Самый простой случай для целой отрицательной степени (1/x = x-1) – обратно-пропорциональная зависимость. Здесь k = 1. | |
Показательная | y = ex | Экспонента | Экспоненциальной зависимостью называют показательную функцию для основания e – иррационального числа примерно равного 2,7182818284590… | |
Показательная | y = ax | График показательной функции | Показательная функция определена для a > 0 и a ≠ 1. Графики функции существенно зависят от значения параметра a. Здесь пример для y = 2x (a = 2 > 1). К движению. | |
Показательная | y = ax | График показательной функции | Показательная функция определена для a > 0 и a ≠ 1. Графики функции существенно зависят от значения параметра a. Здесь пример для y = 0,5x (a = 1/2 < 1). | |
Логарифмическая | y = lnx | График логарифмической функции | График логарифмической функции для основания e (натурального логарифма) иногда называют логарифмикой. | |
Логарифмическая | y = logax | График логарифмической функции | Логарифмы определены для a > 0 и a ≠ 1. Графики функции существенно зависят от значения параметра a. Здесь пример для y = log2x (a = 2 > 1). К движению. | |
Логарифмическая | y = logax | График логарифмической функции | Логарифмы определены для a > 0 и a ≠ 1. Графики функции существенно зависят от значения параметра a. Здесь пример для y = log0,5x (a = 1/2 < 1). | |
Синус | y = sinx | Синусоида | Тригонометрическая функция синус. Случаи с коэффициентами изучаются в разделе “Движение графиков функций”. К движению. | |
Косинус | y = cosx | Косинусоида | Тригонометрическая функция косинус. Случаи с коэффициентами изучаются в разделе “Движение графиков функций”. К движению. | |
Тангенс | y = tgx | Тангенсоида | Тригонометрическая функция тангенс. Случаи с коэффициентами изучаются в разделе “Движение графиков функций”. К движению. | |
Котангенс | y = сtgx | Котангенсоида | Тригонометрическая функция котангенс. Случаи с коэффициентами изучаются в разделе “Движение графиков функций”. К движению. |
На сервере youtube.com открыт канал Mathematichka, на котором размещаются видео, связанные с изучением графиков функций и экзаменационными задачами на эту тему. Подписывайтесь и пишите в комментариях свои вопросы и пожелания.
Пример такого видео.
Перейти на главную страницу.
Понравились материалы сайта? Узнайте, как поддержать сайт и помочь его развитию.
Есть вопросы? пожелания? замечания?
Обращайтесь – mathematichka@yandex.ru
Внимание, ©mathematichka. Прямое копирование материалов на других сайтах запрещено. Ставьте гиперссылку.
Источник