Оксида углерода химические свойства и противопоказания
Оксид
углерода(II) – СО
(угарный
газ, окись углерода, монооксид углерода)
Физические свойства:
бесцветный ядовитый газ без вкуса и запаха, горит голубоватым пламенем, легче
воздуха, плохо растворим в воде. Концентрация угарного газа в воздухе
12,5—74 % взрывоопасна.
Строение молекулы:
Формальная степень
окисления углерода +2 не отражает строение молекулы СО, в которой помимо
двойной связи, образованной обобществлением электронов С и О, имеется
дополнительная, образованная по донорно-акцепторному механизму за счет
неподеленной пары электронов кислорода (изображена стрелкой):
В связи с этим молекула
СО очень прочна и способна вступать в реакции окисления-восстановления только
при высоких температурах. При обычных условиях СО не взаимодействует с водой,
щелочами или кислотами.
Получение:
Основным антропогенным
источником угарного газа CO в настоящее время служат выхлопные газы двигателей
внутреннего сгорания. Угарный газ образуется при сгорании топлива в двигателях
внутреннего сгорания при недостаточных температурах или плохой настройке
системы подачи воздуха (подается недостаточное количество кислорода для
окисления угарного газа CO в углекислый газ CO2). В естественных условиях, на
поверхности Земли, угарный газ CO образуется при неполном анаэробном разложении
органических соединений и при сгорании биомассы, в основном в ходе лесных и
степных пожаров.
1)
В промышленности (в газогенераторах):
Видео – опыт “Получение угарного газа”
C + O2 = CO2 + 402 кДж
CO2 + C = 2CO – 175 кДж
В газогенераторах
иногда через раскалённый уголь продувают водяной пар:
С + Н2О = СО
+ Н2 – Q,
смесь
СО + Н2 – называется синтез – газом.
2)
В лаборатории – термическим разложением муравьиной
или щавелевой кислоты в присутствии H2SO4(конц.):
HCOOH t˚C, H2SO4→ H2O + CO
H2C2O4t˚C,H2SO4→ CO + CO2
+ H2O
Химические свойства:
При обычных условиях CO
инертен; при нагревании – восстановитель;
CO – несолеобразующий оксид.
1)
с кислородом
2C+2O + O2
t˚C → 2C+4O2↑
2)
с оксидами металлов CO + MexOy = CO2 + Me
C+2O + CuO t˚C → Сu + C+4O2↑
3)
с хлором (на свету)
CO + Cl2
свет → COCl2 (фосген – ядовитый газ)
4)*
реагирует с расплавами щелочей (под давлением)
CO + NaOH P →
HCOONa (формиат натрия)
Влияние угарного газа
на живые организмы:
Угарный газ опасен,
потому что он лишает возможности кровь нести кислород к жизненно важным
органам, таким как сердце и мозг. Угарный газ объединяется с гемоглобином,
который переносит кислород к клеткам организма, в следствии чего тот становится
непригодным для транспортировки кислорода. В зависимости от вдыхаемого
количества, угарный газ ухудшает координацию, обостряет сердечно-сосудистые
заболевания и вызывает усталость, головную боль, слабость, Влияние угарного
газа на здоровье человека зависит от его концентрации и времени воздействия на
организм. Концентрация угарного газа в воздухе более 0,1% приводит к смерти в
течение одного часа, а концентрация более 1,2% в течении трех минут.
Применение
оксида углерода:
Главным образом угарный
газ применяют, как горючий газ в смеси с азотом, так называемый генераторный
или воздушный газ, или же в смеси с водородом водяной газ. В металлургии для
восстановления металлов из их руд. Для получения металлов высокой чистоты при
разложении карбонилов.
ЗАКРЕПЛЕНИЕ
№1. Закончите уравнения реакций, составьте электронный баланс для каждой
из реакций, укажите процессы окисления и восстановления; окислитель и
восстановитель:
CO2 + C =
C + H 2 O =
С O + O2 =
CO + Al2O3 =
№2. Вычислите количество энергии, которое необходимо для получения 448 л угарного газа согласно термохимическому уравнению
CO2 + C = 2CO – 175 кДж
Источник
Характеристики и физические свойства оксида углерода
Углерод образует два чрезвычайно устойчивых оксида (СО и СO2), три значительно менее устойчивых оксида (С3O2, С5O2 и С12O9), ряд неустойчивых или плохо изученных оксидов (С2O, С2O3 и др.) и нестехиометрический оксид графита. Среди перечисленных оксидов особую роль играют СО и СO2.
Он довольно токсичен из-за его способности образовывать комплекс с гемоглобином, который примерно в 300 раз устойчивее, чем комплекс кислород-гемоглобин.
Масса 1 л CO2 при нормальных условиях составляет 1,98 г. Растворимость диоксида углерода в воде невелика: 1 объем воды при 20oС растворяет 0,88 объема CO2, а при 0oС – 1,7 объема.
Прямое окисление углерода при недостатке кислорода или воздуха приводит к образованию СО, при достаточном их количестве образуется СO2. Некоторые свойства этих оксидов представлены в табл. 1.
Таблица 1. Физические свойства оксидов углерода.
Свойство | СО | СO2 |
Температура плавления, oС | -205,1 | -56,6 (5,2 атм) |
Температура кипения, oС | -191,5 | -78,5 (возг.) |
Расстояние (С-О), нм | 0,1128 | 0,1163 |
Энергия связи (С-О), кДж/моль | 1070,3 | 531,4 |
Получение оксида углерода
Чистый СО может быть получен в лаборатории дегидратированием муравьиной кислоты (НСООН)концентрированной серной кислотой при ~140 °С:
HCOOH = CO + H2O.
В небольших количествах диоксид углерода можно легко получить действием кислот на карбонаты:
CaCO3 + 2HCl = CaCl2 + H2O + CO2.
В промышленном масштабе CO2 получают главным образом как побочный продукт в процессе синтеза аммиака:
CH4 + 2H2O = CO2 + 4H2;
CO + H2O = CO2 + H2.
Большие количества углекислого газа получают при обжиге известняка:
CaCO3 = CaO + CO2.
Химические свойства оксида углерода
Монооксид углерода химически активен при высоких температурах. Он проявляет себя как сильный восстановитель. Реагирует с кислородом, хлором, серой, аммиаком, щелочами, металлами.
CO + NaOH = Na(HCOO) (t = 120 – 130oC, p);
CO + H2 = CH4 + H2O (t = 150 — 200oC, kat. Ni);
CO + 2H2 = CH3OH (t = 250 — 300oC, kat. CuO/Cr2O3);
2CO + O2 = 2CO2 (kat. MnO2/CuO);
CO + Cl2 = CCl2O(t = 125 — 150oC, kat. C);
4CO + Ni = [Ni(CO)4] (t = 50 — 100oC);
5CO + Fe = [Fe(CO)5] (t = 100 — 200oC, p).
Диоксид углерода проявляет кислотные свойства: реагирует со щелочами, гидратом аммиака. Восстанавливается активными металлами, водородом, углеродом.
CO2 + NaOHdilute = NaHCO3;
CO2 + 2NaOHconc = Na2CO3 + H2O;
CO2 + Ba(OH)2 = BaCO3 + H2O;
CO2 + BaCO3 + H2O = Ba(HCO3)2;
CO2 + NH3×H2O = NH4HCO3;
CO2 + 4H2 = CH4 + 2H2O (t = 200oC, kat. Cu2O);
CO2 + C = 2CO (t > 1000oC);
CO2 + 2Mg = C + 2MgO;
2CO2 + 5Ca = CaC2 + 4CaO (t = 500oC);
2CO2 + 2Na2O2 = 2Na2CO3 + O2.
Применение оксида углерода
Монооксид углерода широко используется как топливо в виде генераторного газа или водяного газа и образуется также привыделении многих металлов из их оксидов восстановлением углем. Генераторный газ получают, пропуская воздух черезраскаленный уголь. В его состав входит около 25% СО, 4% СO2 и 70% N2 со следами Н2 и СН462.
Применение диоксида углерода чаще всего обусловлено его физическими свойствами. Его используют как охлаждающий агент, для газирования напитков, при получении облегченных(вспененных) пластмасс, а также как газ для создания инертной атмосферы.
Примеры решения задач
Источник
Оксид углерода (II) – СО (угарный газ, окись углерода, монооксид углерода)
Физические свойства: бесцветный ядовитый газ без вкуса и запаха, горит голубоватым пламенем, легче воздуха, плохо растворим в воде. Концентрация угарного газа в воздухе 12,5—74 % взрывоопасна.
Строение молекулы:
Формальная степень окисления углерода +2 не отражает строение молекулы СО, в которой помимо двойной связи, образованной обобществлением электронов С и О, имеется дополнительная, образованная по донорно-акцепторному механизму за счет неподеленной пары электронов кислорода:
В связи с этим молекула СО очень прочна и способна вступать в реакции окисления-восстановления только при высоких температурах. При обычных условиях СО не взаимодействует с водой, щелочами или кислотами.
Получение:
Основным антропогенным источником угарного газа CO в настоящее время служат выхлопные газы двигателей внутреннего сгорания. Угарный газ образуется при сгорании топлива в двигателях внутреннего сгорания при недостаточных температурах или плохой настройке системы подачи воздуха (подается недостаточное количество кислорода для окисления угарного газа CO в углекислый газ CO2). В естественных условиях, на поверхности Земли, угарный газ CO образуется при неполном анаэробном разложении органических соединений и при сгорании биомассы, в основном в ходе лесных и степных пожаров.
1) Получение в промышленности (в газогенераторах):
Видео – опыт “Получение угарного газа”
В газогенераторах иногда через раскалённый уголь продувают водяной пар:
С + Н2О = СО + Н2 – Q,
смесь СО + Н2 – называется синтез – газом.
2) Получение СО в лаборатории – термическим разложением муравьиной или щавелевой кислоты в присутствии H2SO4(конц.):
HCOOH t˚C, H2SO4 → H2O + CO
H2C2O4 t˚C,H2SO4→ CO + CO2 + H2O
Химические свойства:
При обычных условиях CO инертен; при нагревании – восстановитель;
Характер свойств угарного газа CO – несолеобразующий оксид.
1) Взаимодействие с кислородом:
2C+2O + O2 t˚C → 2C+4O2↑
2) Взаимодействие с оксидами металлов: CO + MexOy = CO2 + Me
C+2O + CuO t˚C → Сu + C+4O2↑
3) Взаимодействие с хлором (на свету)
CO + Cl2 свет → COCl2 (фосген – ядовитый газ)
4) Взаимодействие с расплавами щелочей (под давлением)
CO + NaOH Pасплав→ HCOONa (формиат натрия)
Влияние угарного газа на живые организмы:
Угарный газ опасен, потому что он лишает возможности кровь нести кислород к жизненно важным органам, таким как сердце и мозг. Угарный газ объединяется с гемоглобином, который переносит кислород к клеткам организма, в следствии чего тот становится непригодным для транспортировки кислорода. В зависимости от вдыхаемого количества, угарный газ ухудшает координацию, обостряет сердечно-сосудистые заболевания и вызывает усталость, головную боль, слабость, Влияние угарного газа на здоровье человека зависит от его концентрации и времени воздействия на организм. Концентрация угарного газа в воздухе более 0,1% приводит к смерти в течение одного часа, а концентрация более 1,2% в течении трех минут.
Применение оксида углерода:
Главным образом угарный газ применяют, как горючий газ в смеси с азотом, так называемый генераторный или воздушный газ, или же в смеси с водородом водяной газ. В металлургии для восстановления металлов из их руд. Для получения металлов высокой чистоты при разложении карбонилов.
Оксид углерода (IV) СO2 – углекислый газ
Физические свойства: Углекислый газ, бесцветный, без запаха, растворимость в воде – в 1V H2O растворяется 0,9V CO2 (при нормальных условиях); тяжелее воздуха; t°пл.= -78,5°C (твёрдый CO2 называется “сухой лёд”); не поддерживает горение и дыхание.
Строение молекулы: Углекислый газ имеет следующие электронную и структурную формулы –
Все четыре связи ковалентые полярные.
Получение углекислого газа:
1. В промышленности: Термическим разложением солей угольной кислоты (карбонатов). Обжиг известняка.
CaCO3 t=1200˚C→ CaO + CO2
2. В лаборатории. Действием сильных кислот на карбонаты и гидрокарбонаты –
Видео: получение СО2 в лаборатории
CaCO3 (мрамор) + 2HCl → CaCl2 + H2O + CO2
NaHCO3 + HCl → NaCl + H2O + CO2
3. Сгорание углеродсодержащих веществ:
СН4 + 2О2 → 2H2O + CO2
4. При медленном окислении в биохимических процессах (дыхание, гниение, брожение)
Способы собирания
вытеснением воздуха |
Химические свойства СО2:
Видео “Химические свойства углекислого газа”
Характер свойств углекислого газа – это Кислотный оксид:
1) Взаимодействие с водой с образованием непрочной угольной кислоты:
СО2 + Н2О ↔ Н2СО3
2) Взаимодействие с основными оксидами и основаниями, образуя соли угольной кислоты – карбонаты
Na2O + CO2 → Na2CO3
2NaOH + CO2 → Na2CO3 + H2O
NaOH + CO2 (избыток) → NaHCO3
3) При повышенной температуре может проявлять окислительные свойства – окисляет металлы – СO2 + Me = MexOy + C
С+4O2 + 2Mg t˚C→ 2Mg+2O + C0
Видео “Горение магния в углекислом газе”
Качественная реакция на углекислый газ: помутнение известковой воды Ca(OH)2 за счёт образования белого осадка – нерастворимой соли CaCO3:
Ca(OH)2 + CO2 → CaCO3 ↓+ H2O
Применение углекислого газа:
Видео “Тушение пламени углекислым газом”
Источник
Полный курс химии вы можете найти на моем сайте CHEMEGE.RU. Чтобы получать актуальные материалы и новости ЕГЭ по химии, вступайте в мою группу в ВКонтакте или на Facebook. Если вы хотите подготовиться к ЕГЭ по химии на высокие баллы, приглашаю на онлайн-курс “40 шагов к 100 баллам на ЕГЭ по химии“.
1. Положение углерода в периодической системе химических элементов
2. Электронное строение углерода
3. Физические свойства и нахождение в природе
4. Качественные реакции
5. Химические свойства
5.1. Взаимодействие с простыми веществами
5.1.1. Взаимодействие с галогенами
5.1.2. Взаимодействие с серой и кремнием
5.1.3. Взаимодействие с водородом и фосфором
5.1.4. Взаимодействие с азотом
5.1.5. Взаимодействие с активными металлами
5.1.6. Горение
5.2. Взаимодействие со сложными веществами
5.2.1. Взаимодействие с водой
5.2.2. Взаимодействие с оксидами металлов
5.2.3. Взаимодействие с серной кислотой
5.2.4. Взаимодействие с азотной кислотой
5.2.5. Взаимодействие с солями
Бинарные соединения углерода – карбиды
Оксид углерода (II)
1. Строение молекулы и физические свойства
2. Способы получения
3. Химические свойства
3.1. Взаимодействие с кислородом
3.2. Взаимодействие с хлором
3.3. Взаимодействие с водородом
3.4. Взаимодействие с щелочами
3.5. Взаимодействие с оксидами металлов
3.6. Взаимодействие с прочими окислителями
Оксид углерода (IV)
1. Строение молекулы и физические свойства
2. Способы получения
3. Химические свойства
3.1. Взаимодействие с основными оксидами и основаниями
2.3. Взаимодействие с карбонатами и гидрокарбонатами
2.4. Взаимодействие с восстановителями
Карбонаты и гидрокарбонаты
Углерод
Положение в периодической системе химических элементов
Углерод расположен в главной подгруппе IV группы (или в 14 группе в современной форме ПСХЭ) и во втором периоде периодической системы химических элементов Д.И. Менделеева.
Электронное строение углерода
Электронная конфигурация углерода в основном состоянии
Электронная конфигурация углерода в возбужденном состоянии
Атом углерода содержит на внешнем энергетическом уровне 2 неспаренных электрона и 1 неподеленную электронную пару в основном энергетическом состоянии и 4 неспаренных электрона в возбужденном энергетическом состоянии.
Степени окисления атома углерода – от -4 до +4.
Характерные степени окисления -4, 0, +2, +4.
Физические свойства
Углерод в природе существует в виде нескольких аллотропных модификаций: алмаз, графит, карбин, фуллерен.
Алмаз – это модификация углерода с атомной кристаллической решеткой. Алмаз – самое твердое минеральное кристаллическое вещество, прозрачное, плохо проводит электрический ток и тепло. Атомы углерода в алмазе находятся в состоянии sp³-гибридизации.
Алмаз
Кристаллы алмаза
Графит – это аллотропная модификация, в которой атомы углерода находятся в состоянии sp² -гибридизации. При этом атомы связаны в плоские слои, состоящие из шестиугольников, как пчелиные соты. Слои удерживаются между собой слабыми связями. Это наиболее устойчивая при нормальных условиях аллотропная модификация углерода.
Графит – мягкое вещество серо-стального цвета, с металлическим блеском. Хорошо проводит электрический ток. Жирный на ощупь.
Графит
Карбин – вещество, в составе которого атомы углерода находятся в sp-гибридизации. Состоит из цепочек и циклов, в которых атомы углерода соединены двойными и тройными связями. Карбин – мелкокристаллический порошок серого цвета.
[=C=C=C=C=C=C=]n или [–C≡C–C≡C–C≡C–]n
Карбин
Карбин
Фуллерен – это искусственно полученная модифицикация углерода. Молекулы фуллерена – выпуклые многогранники С₆₀, С₇₀ и др. Многогранники образованы пяти- и шестиугольниками, в вершинах которых расположены атомы углерода.
Фуллерены – черные вещества с металлическим блеском, обладающие свойствами полупроводников.
Фуллерен
В природе углерод встречается как в виде простых веществ (алмаз, графит), так и в виде сложных соединений (органические вещества – нефть, природные газ, каменный уголь, карбонаты).
Качественные реакции
Качественная реакция на карбонат-ионы CO₃²⁻ – взаимодействие солей-карбонатов с сильными кислотами. Более сильные кислоты вытесняют угольную кислоту из солей. При этом выделяется бесцветный газ, не поддерживающий горение – углекислый газ.
Например, карбонат кальция растворяется в соляной кислоте:
CaCO₃ + 2HCl → CaCl₂ + H₂O + CO₂
Видеоопыт взаимодействия карбоната кальция с соляной кислотой можно посмотреть здесь.
Качественная реакция на углекислый газ CO₂ – помутнение известковой воды при пропускании через нее углекислого газа:
CO₂ + Ca(OH)₂ → CaCO₃ + H₂O
При дальнейшем пропускании углекислого газа осадок растворяется, т.к. карбонат кальция под действием избытка углекислого газа переходит в растворимый гидрокарбонат кальция:
CaCO₃ + CO₂ + H₂O → Ca(HCO₃)₂
Карбонат кальция с углекислым газом
Видеоопыт взаимодействия гидроксида кальция с углекислым газом (качественная реакция на углекислый газ) можно посмотреть здесь.
Углекислый газ СО₂ не поддерживает горение. Угарный газ CO горит голубым пламенем.
Горение угарного газа
Соединения углерода
Основные степени окисления углерода – +4, +2, 0, -1 и -4.
Наиболее типичные соединения углерода:
Химические свойства
При нормальных условиях углерод существует, как правило, в виде атомных кристаллов (алмаз, графит), поэтому химическая активность углерода – невысокая.
- Углерод проявляет свойства окислителя (с элементами, которые расположены ниже и левее в Периодической системе) и свойства восстановителя (с элементами, расположенными выше и правее). Поэтому углерод реагирует и с металлами, и с неметаллами.
1.1. Из галогенов углерод при комнатной температуре реагирует с фтором с образованием фторида углерода:
C + 2F₂ → CF₄
1.2. При сильном нагревании углерод реагирует с серой и кремнием с образованием бинарного соединения сероуглерода и карбида кремния соответственно:
C + 2S → CS₂
C + Si → SiC
1.3. Углерод не взаимодействует с фосфором.
При взаимодействии углерода с водородом образуется метан. Реакция идет в присутствии катализатора (никель) и при нагревании:
С + 2Н₂ → СН₄
1.4. С азотом углерод реагирует при действии электрического разряда, образуя дициан:
2С + N₂ → N≡C–C≡N
1.5. В реакциях с активными металлами углерод проявляет свойства окислителя. При этом образуются карбиды:
4C + 3Al → Al₄C₃
2C + Ca → CaC₂
1.6. При нагревании с избытком воздуха графит горит, образуя оксид углерода (IV):
C + O₂ → CO₂
при недостатке кислорода образуется угарный газ СО:
2C + O₂ → 2CO
Алмаз горит при высоких температурах:
Горение алмаза в жидком кислороде
Графит также горит
Графитовые стержни под напряжением:
2. Углерод взаимодействует со сложными веществами:
2.1. Раскаленный уголь взаимодействует с водяным паром с образованием угарного газа и водорода:
CO + H₂ + O → C + 2O + H₂O
2.2. Углерод восстанавливает многие металлы из основных и амфотерных оксидов. При этом образуются металл и угарный газ. Получение металлов из оксидов с помощью углерода и его соединений называют пирометаллургией.
Например, углерод взаимодействует с оксидом цинка с образованием металлического цинка и угарного газа:
2ZnO + C → 2Zn + CO
Также углерод восстанавливает железо из железной окалины:
4С + Fe₃O₄ → 3Fe + 4CO
При взаимодействии с оксидами активных металлов углерод образует карбиды.
Например, углерод взаимодействует с оксидом кальция с образованием карбида кальция и угарного газа. Таким образом, углерод диспропорционирует в данной реакции:
3С + СаО → СаС₂ + СО
9С + 2Al₂O₃ → Al₄C₃ + 6CO
2.3. Концентрированная серная кислота окисляет углерод при нагревании. При этом образуются оксид серы (IV), оксид углерода (IV) и вода:
C + 2H₂SO₄(конц) → CO₂ + 2SO₂ + 2H₂O
2.4. Концентрированная азотная кислотой окисляет углерод также при нагревании. При этом образуются оксид азота (IV), оксид углерода (IV) и вода:
C + 4HNO₃ (конц) → CO₂ + 4NO₂ + 2H₂O
2.5. Углерод проявляет свойства восстановителя и при сплавлении с некоторыми солями, в которых содержатся неметаллы с высокой степенью окисления.
Например, углерод восстанавливает сульфат натрия до сульфида натрия:
4C + Na₂SO₄ → Na₂S + 4CO
Карбиды
Карбиды – это соединения элементов с углеродом. Карбиды разделяют на ковалентные и ионные в зависимости от типа химической связи между атомами.
Создать карусель Добавьте описание
Все карбиды проявляют свойства восстановителей и могут быть окислены сильными окислителями.
Например, карбид кремния окисляется концентрированной азотной кислотой при нагревании до углекислого газа, оксида кремния (IV) и оксида азота (II):
SiC + 8HNO₃ → 3SiO₂ + 3CO₂ + 8NO + 4H₂O
Оксид углерода (II)
Строение молекулы и физические свойства
Оксид углерода (II) (“угарный газ”) – это газ без цвета и запаха. Сильный яд. Небольшая концентрация угарного газа в воздухе может вызвать сонливость и головокружение. Большие концентрации угарного газа вызывают удушье.
Строение молекулы оксида углерода (II) – линейное. Между атомами углерода и кислорода образуется тройная связь, за счет дополнительной донорно-акцепторной связи:
Способы получения
В лаборатории угарный газ можно получить действием концентрированной серной кислоты на муравьиную или щавелевую кислоты:
НСООН → CO + H₂O
H₂C₂O₄ → CO + CO₂ + H₂O
В промышленности угарный газ получают в газогенераторах при пропускании воздуха через раскаленный уголь:
C + O₂ → CO₂
CO₂ + C → 2CO
Еще один важный промышленный способ получения угарного газа – паровая конверсия метана. При взаимодействии перегретого водяного пара с метаном образуется угарный газ и водород:
СН₄ + Н₂O → СО + 3Н₂
Также возможна паровая конверсия угля:
CO + H₂ + O → C + 2O + H₂O
Угарный газ в промышленности также можно получать неполным окислением метана:
2СН₄ + О₂ → 2СО + 4Н₂
Химические свойства
Оксид углерода (II) – несолеобразующий оксид. За счет углерода со степенью окисления +2 проявляет восстановительные свойства.
- Угарный газ горит в атмосфере кислорода. Пламя окрашено в синий цвет:
2СO + O₂ → 2CO₂
2. Оксид углерода (II) окисляется хлором в присутствии катализатора или под действием света с образованием фосгена. Фосген – ядовитый газ.
CO + Cl₂ → COCl₂
3. Угарный газ взаимодействует с водородом при повышенном давлении. Смесь угарного газа и водорода называется синтез-газ. В зависимости от условий из синтез-газа можно получить метанол, метан, или другие углеводороды.
Например, под давлением больше 20 атмосфер, при температуре 350°C и под действием катализатора угарный газ реагирует с водородом с образованием метанола:
СО + 2Н₂ → СН₃ОН
4. Под давлением оксид углерода (II) реагирует с щелочами. При этом образуется формиат – соль муравьиной кислоты.
Например, угарный газ реагирует с гидроксидом натрия с образованием формиата натрия:
CO + NaOH → HCOONa
5. Оксид углерода (II) восстанавливает металлы из оксидов.
Например, оксид углерода (II) реагирует с оксидом железа (III) с образованием железа и углекислого газа:
3CO + Fe₂O₃ → 2Fe + 3CO₂
Оксиды меди (II) и никеля (II) также восстанавливаются угарным газом:
СО + CuO → Cu + CO₂
СО + NiO → Ni + CO₂
6. Угарный газ окисляется и другими сильными окислителями до углекислого газа или карбонатов.
Например, пероксидом натрия:
CO + Na₂O₂ → Na₂CO₃
Оксид углерода (IV)
Строение молекулы и физические свойства
Оксид углерода (IV) (углекислый газ) – газ без цвета и запаха. Тяжелее воздуха. Замороженный углекислый газ называют также “сухой лед”. Сухой лед легко подвергается сублимации – переходит из твердого состояния в газообразное.
Смешивая сухой лед и различные вещества, можно получить интересные эффекты. Например, сухой лед в пиве:
Углекислый газ не горит, поэтому его применяют при пожаротушении.
Молекула углекислого газа линейная, атом углерода находится в состоянии sp-гибридизации, образует две двойных связи с атомами кислорода:
Обратите внимание! Молекула углекислого газа не полярна. Каждая химическая связь С=О по отдельности полярна, а вся молекула не будет полярна. Объяснить это очень легко. Обозначим направление смещения электронной плотности в полярных связях стрелочками (векторами):
Теперь давайте сложим эти векторы. Сделать это очень легко. Представьте, что атом углерода – это покупатель в магазине. А атомы кислорода – это консультанты, которые тянут его в разные стороны. В данном опыте консультанты одинаковые, и тянут покупателя в разные стороны с одинаковыми силами. Несложно увидеть, что покупатель двигаться не будет ни влево, ни вправо. Следовательно, сумма этих векторов равна нулю. Следовательно, полярность молекулы углекислого газа равна нулю.
Способы получения
В лаборатории углекислый газ можно получить разными способами:
- Углекислый газ образуется при действии сильных кислот на карбонаты и гидрокарбонаты металлов. При этом взаимодействуют с кислотами и нерастворимые карбонаты, и растворимые.
Например, карбонат кальция растворяется в соляной кислоте:
CaCO₃ + 2HCl → CaCl₂ + H₂O + CO₂
Видеоопыт взаимодействия карбоната кальция с соляной кислотой можно посмотреть здесь.
Еще один пример: гидрокарбонат натрия реагирует с бромоводородной кислотой:
NaHCO₃ + HBr → NaBr + H₂O + CO₂
2. Растворимые карбонаты реагируют с растворимыми солями алюминия, железа (III) и хрома (III). Карбонаты трехвалентных металлов необратимо гидролизуются в водном растворе.
Например: хлорид алюминия реагирует с карбонатом калия. При этом выпадает осадок гидроксида алюминия, выделяется углекислый газ и образуется хлорид калия:
2AlCl₃ + 3K₂CO₃ + 3H₂O → 2Al(OH)₃↓ + CO₂↑ + 6KCl
3. Углекислый газ также образуется при термическом разложении нерастворимых карбонатов и при разложении растворимых гидрокарбонатов.
Например, карбонат кальция разлагается при нагревании на оксид кальция и углекислый газ:
CaCO₃ → CaO + CO₂
Химические свойства
Углекислый газ – типичный кислотный оксид. За счет углерода со степенью окисления +4 проявляет слабые окислительные свойства.
- Как кислотный оксид, углекислый газ взаимодействует с водой. Реакция очень сильно обратима, поэтому мы считаем, что в реакциях угольная кислота распадается почти полностью при образовании.
CO₂ + H₂O ↔ H₂CO₃
2. Как кислотный оксид, углекислый газ взаимодействует с основными оксидами и основаниями. При этом углекислый газ реагирует только с сильными основаниями (щелочами) и их оксидами. При взаимодействии углекислого газа с щелочами возможно образование как кислых, так и средних солей.
Например, гидроксид калия взаимодействует с углекислым газом. В избытке углекислого газа образуется кислая соль, гидрокарбонат калия:
KOH + CO₂ → KHCO₃
При избытке щелочи образуется средняя соль, карбонат калия:
2KOH + CO₂ → K₂CO₃ + H₂O
Помутнение известковой воды – качественная реакция на углекислый газ:
Ca(OH)₂ + CO₂ → CaCO₃ + H₂O
Видеоопыт взаимодействия гидроксида кальция (известковая вода) с углекислым газом можно посмотреть здесь.
3. Углекислый газ взаимодействует с карбонатами. При пропускании СО₂ через раствор карбонатов образуются гидрокарбонаты.
Например, карбонат натрия взаимодействует с углекислым газом. В избытке углекислого газа образуется кислая соль, гидрокарбонат натрия:
Na₂CO₃ + CO + H₂O → 2NaHCO₃
4. Как слабый окислитель, углекислый газ взаимодействует с некоторыми восстановителями.
Например, углекислый газ взаимодействует с углеродом с образованием угарного газа:
CO₂ + C → 2CO
Магний горит в атмосфере углекислого газа:
2Мg + CO₂ → C + 2MgO
Видеоопыт взаимодействия магния с углекислым газом можно посмотреть здесь.
Поэтому углекислый газ нельзя применять для пожаротушения горящего магния.
Углекислый газ взаимодействует с пероксидом натрия. При этом пероксид натрия диспропорционирует:
2CO₂ + 2Na₂O₂ → 2Na₂CO₃ + O₂
Карбонаты и гидрокарбонаты
При нагревании карбонаты (все, кроме карбонатов щелочных металлов и аммония) разлагаются до оксида металла и оксида углерода (IV).
CaCO₃ → CaO + CO₂
Карбонат аммония при нагревании разлагается на аммиак, воду и углекислый газ:
(NH₄)₂CO₃ → 2NH₃ + 2H₂O + CO₂
Гидрокарбонаты при нагревании переходят в карбонаты:
2NaHCO₃ → Na₂CO₃ + CO₂ + H₂O
Качественной реакцией на ионы СО₃²⁻ и НСО³⁻ является их взаимодействие с более сильными кислотами, последние вытесняют угольную кислоту из солей, а та разлагается с выделением СО₂.
Например, карбонат натрия взаимодействует с соляной кислотой:
Na₂CO₃ + 2HCl → 2NaCl + CO₂↑ + H₂O
Гидрокарбонат натрия также взаимодействует с соляной кислотой:
NaHCO₃ + HCl → NaCl + CO₂↑ + H₂O
Гидролиз карбонатов и гидрокарбонатов
Растворимые карбонаты и гидрокарбонаты гидролизуются по аниону. Гидролиз протекает ступенчато и обратимо, т.е. чуть-чуть:
I ступень: CO₃²⁻ + H₂O = HCO₃⁻ + OH⁻
II ступень: HCO₃⁻ + H₂O = H₂CO₃ + OH⁻
Однако карбонаты и гидрокарбонаты алюминия, хрома (III) и железа (III) гидролизуются необратимо, полностью, т.е. в водном растворе не существуют, а разлагаются водой:
Al₂(SO₄)₃ + 6NaHCO₃ → 2Al(OH)₃ + 6CO₂ + 3Na₂SO₄
2AlBr₃ + 3Na₂CO₃ + 3H₂O → 2Al(OH)₃↓ + CO₂↑ + 6NaBr
Al₂(SO₄)₃ + 3K₂CO₃ + 3H₂O → 2Al(OH)₃↓ + 3CO₂↑ + 3K₂SO₄
Более подробно про гидролиз можно прочитать в соответствующей статье.
Источник